Exploiting ISAT to solve the reaction–diffusion equation
نویسندگان
چکیده
We develop and demonstrate a computationally efficient numerical splitting technique for solving the reaction–diffusion equation. The scheme is based on the Strang splitting technique wherein the portions of the governing equations containing stiff chemical reaction terms are separated from those parts containing the less-stiff transport terms. As demonstrated, the scheme achieves second-order accuracy in space through the use of centred finite differences; second-order accuracy in time is achieved through Strang splitting. To improve greatly the computational efficiency, the pure reaction sub-steps use in situ adaptive tabulation (ISAT) to compute efficiently the reaction mapping while the pure diffusion sub-steps use an implicit Crank–Nicolson finite-difference method. The scheme is applied to an unsteady one-dimensional reaction– diffusion model equation with detailed chemical kinetics. For this test problem, we show spatial and temporal convergence results, the impacts of ISAT and ODE solver error tolerances, and demonstrate computational speed-ups achieved by using ISAT over direct integration.
منابع مشابه
A numerical treatment of a reaction-diffusion model of spatial pattern in the embryo
In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملModelling the catalyst fragmentation pattern in relation to molecular properties and particle overheating in olefin polymerization
A two-dimensional single particle finite element model was used to examine the effects of particle fragmental pattern on the average molecular weights, polymerization rate and particle overheating in heterogeneous Ziegler-Natta olefin polymerization. A two-site catalyst kinetic mechanism was employed together with a dynamic two-dimensional molecular species in diffusion-reaction equation. The i...
متن کاملA numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon
This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...
متن کاملPullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.
متن کامل